2023/05/09
インタビュー
AIへの聞き方をアセット化せよ
PwC Japanグループ データ&アナリティクス/AI Labリーダー
藤川琢哉氏に聞く


藤川琢哉氏 ふじかわ・たくや
PwC コンサルティング合同会社
上席執行役員、 Senior Officer
東京工業大学大学院でAIを専攻後、べリングポイント株式会社に入社。同社のPwCネットワークへの加入と社名変更にともない、プライスウォーターハウスクーパースコンサルタント株式会社(現PwCコンサルティング合同会社)に転籍。十数年にわたりデジタル領域のコンサルティング業務に従事し、データアナリティクスをはじめサイバーセキュリティ、プライバシー、ITインフラストラクチャなど幅広いデジタル領域の専門性を有する。
PwC Japanグループはこのほど、生成AIの専門タスクフォースを編成し、企業向けのコンサルティングサービスを開始した。生成AIは画像や音声、テキストなどを用いた深層学習をもとに、インターネット上の大量のデータを組み合わせて新しいデータを生成できる人工知能。人間のようにチャットができるモデルの登場がその進化を見せつけ、ビジネス利用に向けた動きを急加速させている。PwC Japanグループ データ&アナリティクス/AI Labリーダーで、生成AI専門タスクフォース責任者も務める藤川琢哉氏に、生成AI 導入のポイントを聞いた。
(本記事は「月刊BCPリーダーズvol.38(2023年5月号)」にも掲載しています)
いまはとにかく使ってみる段階
Q.生成AIのビジネス利用に向けて企業へのコンサルティングサービスを開始されましたが、どのような支援をしているのですか?
まずはとにかく使ってみて、そこから学ぶことが重要と考えています。検証を重ねるなかで「こういう業務にこう使える」というのが見えてきたら、それによって組織を大きく変えていくような判断もあるかもしれませんが、まずは使ってみることです。
とはいえ、多くの企業が生成AIを使いたいと思いながら、いまひとつ踏み込めないでいるのは、リスクがあるからでしょう。特にいまは対話型AIが注目されていますが、やはりリスクをはらんでいる。そのため我々としては、主に2本立ての支援をしています。
一つは、どの業務に導入すれば最も効果が出るのかをクイックに診断する。「この業務でこのような使い方をするとこれだけの工数が削減できます」といった具合に、AIのユースケースを考え、その効果を見立てるサービスです。
もう一つは、そのユースケースにおいて、どのようなリスクがあるかを診断する。リスクシナリオを分析し「この業務でこういう使い方はNG」「この業務で使うときは必ず人のチェックを入れてください」などと、業務上のガイドラインをつくっていくサービスですね。
生成AIのリスクは、大枠では共通です。プロンプトと呼ばれる指示の入力から機密情報が漏えいする、成果物をそのまま対外的に使うと虚偽や著作権侵害などがあったときレピュテーションを毀損する。ただしそれをどうコントロールするかはビジネスによりますから、業務レベルのガイドラインは企業それぞれです。
例えばマーケティングなどは、費用対効果は出さないといけないでしょうが、業務の特性上、試行錯誤を重ねながら最善を見出していく側面があります。一方で、インフラ施設のオペレーションなどは、絶対にミスが許されません。
ですから、生成AIを導入する際はハイリスクな領域の見極めが重要。ここは使ってはダメ、ここは使っていいと、両者を明確に分けることがポイントです。
生成AIのビジネスインパクト
Q.具体的にどのような業務に生成AIが導入され、どのようなビジネスインパクトをもたらすのですか?
端的にいうと働き方が変わる。事務作業は相当の効率化が期待でき、専門知識を必要とする仕事やクリエイティブな仕事もかなりの生産性向上が見込めます。
一般的に導入インパクトが大きいと考えられているのは、マーケティング・広報、総務、経理・財務、人事、監査などです。つまり、クリエイティブまわりと事務まわり。業務内容は両極端ですが、この二極で人の仕事と働き方が大きく変わると見られています。

ただ、それらの領域ですべての仕事が一気にAIに置き換わるかというと、そうともいえません。というのも、先ほど少し触れたとおり、生成AIはアウトプットに虚偽を含む、つまり嘘をつく性質があるからです。
「AIは嘘をつく」という性質をふまえ、リスクをしっかり検討したうえで使用する必要がありますから、人によるチェックが介在する部分はかなり残るのではないかと思います。特に経理・財務などは厳密な数字管理が要求されるため、慎重なチェック体制が必要になると考えています。
Q.実際のところ、企業はどこにどのようにAIを使っていこうとしているのですか?
まだそこまで落とし込まれていないのが現状。冒頭で申し上げたとおり、まずはとにかく使ってみようという段階です。
我々のところにはいま、法務部門などからAIリスクの問い合わせが増えています。また、経営トップのかけ声で「AI担当」が検討を命じられ、そこから相談をいただくケースも多い。ここでいう「AI担当」は、特定の部門というより、AIをテーマとしたCoEとかプロジェクトチームといった横串の組織です。
実際、社内導入を検討する際は、そうした横串の組織によって全社的に網をかけ、どこにどう使えばどう効果が出るのかを見極めながら使っていく方法が有効です。情報の集約が極めて重要ですから、部門ごとあるいは業務ごとにバラバラと使うのはあまり得策ではありません。
Q.社員が個々にアカウントをつくって生成AIサービスを導入するのはよくありませんか?
リスク視点でいうと、ウェブ上で生成AIを利用する場合、プロンプトの入力が学習され、ほかに使われてしまうということで、情報漏えいが懸念されているわけです。業務上の情報は気軽に入れられないため、社員が個々に生成AIを利用することは推奨されてきませんでした。
ただ、対話型AIのサービスも刻々と変わっていて、ここへきて入力した内容を学習させない「オプトアウト」という申請方式が可能になった。以前より漏洩リスクは下がってきていますから、オプトアウト方式を活用して導入するのも一つの手だと思います。
とはいえ、企業で使う場合はやはり契約がないと、何かあったときに不安でしょう。APIとして法人向けに生成AIサービスを提供するプロバイダーなども出てきていますから、そうしたところと契約して使っていくのが無難です。またそのほうが全社的な方針も浸透しやすく、情報集約も進むと思います。
- keyword
- 生成AI
- AIリスク
- プロンプトエンジニアリング
- 職業転換リスク
インタビューの他の記事
おすすめ記事
-
-
中澤・木村が斬る!今週のニュース解説
毎週火曜日(平日のみ)朝9時~、リスク対策.com編集長 中澤幸介と兵庫県立大学教授 木村玲欧氏(心理学・危機管理学)が今週注目のニュースを短く、わかりやすく解説します。
2025/08/26
-
-
ゲリラ雷雨の捕捉率9割 民間気象会社の実力
突発的・局地的な大雨、いわゆる「ゲリラ雷雨」は今シーズン、全国で約7万8000 回発生、8月中旬がピーク。民間気象会社のウェザーニューズが7月に発表した中期予想です。同社予報センターは今年も、専任チームを編成してゲリラ雷雨をリアルタイムに観測中。予測精度はいまどこまで来ているのかを聞きました。
2025/08/24
-
スギヨ、顧客の信頼を重視し代替生産せず
2024年1月に発生した能登半島地震により、大きな被害を受けた水産練製品メーカーの株式会社スギヨ(本社:石川県七尾市)。その再建を支えたのは、同社の商品を心から愛する消費者の存在だった。全国に複数の工場があり、多くの商品について代替生産に踏み切る一方、主力商品の1つ「ビタミンちくわ」に関しては「能登で生産している」という顧客の期待を重視し、あえて現地工場の再開を待つという異例の判断を下した。結果として、消費者からの強い支持を受け、ビタミンちくわは過去最高近い売り上げを記録している。一方、BCPでは大規模な地震などが想定されていないなどの課題も明らかになった。同社では今、BCPの立て直しを進めている。
2025/08/24
-
-
-
-
ゲリラ豪雨を30分前に捕捉 万博会場で実証実験
「ゲリラ豪雨」は不確実性の高い気象現象の代表格。これを正確に捕捉しようという試みが現在、大阪・関西万博の会場で行われています。情報通信研究機構(NICT)、理化学研究所、大阪大学、防災科学技術研究所、Preferred Networks、エムティーアイの6者連携による実証実験。予測システムの仕組みと開発の経緯、実証実験の概要を聞きました。
2025/08/20
-
※スパム投稿防止のためコメントは編集部の承認制となっておりますが、いただいたコメントは原則、すべて掲載いたします。
※個人情報は入力しないようご注意ください。
» パスワードをお忘れの方